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Abstract. Nematic liquid-crystal wetting at a solid interface presents particularly interesting
features when the nematic director orientation at the solid interface is antagonistic to that favoured
by the emerging nematic–isotropic interface. We have used the Landau–de Gennes theory of
an inhomogeneous liquid crystal to make a quantitative study of this phenomenon, for the case
when the solid surface favours homeotropic anchoring but the nematic–isotropic surface favours
planar anchoring. By generalizing the theory of Sheng to allow spatial variation of the director,
we find a richer surface phase diagram exhibiting a prewetting line or boundary transition shifted
from that discussed by Sheng, as well as a transition between two nematic wetting phases, at
which the wetting layer director profile changes from a homeotropic to a distorted texture.

1. Introduction

There has been an enormous amount of interest in recent years in wetting phenomena in
fluids [1]. A particular case of this occurs in liquid-crystal-forming fluids just above the
onset of nematic behaviour. In these fluids the surface may favour the nematic phase
sufficiently to induce a nematic wetting layer which diverges as the temperature approaches
the nematic–isotropic phase transition temperatureTNI [2, 3]. However, the liquid-crystal
order parameter is a tensor, and this may affect the wetting characteristics.

One may imagine a case in which the nematic phase does indeed wet an interface, but
where the director favoured by the wall is not the same as that favoured by the emergent
nematic–isotropic interface. In this case the nature of the order parameter is a crucial
determining factor of the wetting behaviour. Phenomenological studies of this problem by
Sullivan and Lipowsky [4], and Sluckin and Poniewierski [5], using an interface Hamiltonian
approach, indicate the possibility of a ‘director-distorted’ nematic liquid-crystal wetting
phase. This phase is characterized by continuous rotation of the director between the two
interfaces of an emergent nematic layer. This approach predicts that the thicknessw of
the nematic wetting layer behaves as1T −1/2 and the anomalous contribution to the surface
tensionγ as1T 1/2, where1T = T −TNI is the reduced temperature. In fact, as temperature
is reduced there will be two wetting régimes. The high-temperature régime will be a thin
nematic film whose width may not be diverging, or may diverge logarithmically with1T .
As 1T is reduced one expects a continuous phase transition to the director-distorted wetting
phase.

For the case of strong homeotropic anchoring at a substrate (e.g. glass), logarithmic
layer growth behaviour has been observed [6, 7]. This behaviour is in fact characteristic of
scalar Landau-like theories of wetting. It can be contrasted with power-law layer growth
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of the form1T −β , with β < 0.5, predicted to follow if van der Waals forces dominate [1].
One concludes therefore that in these experiments nearest-neighbour interactions between
molecules dominate, and the director orientation is uniform [2, 3]. At a homeotropically
anchoring substrate, a non-uniform director orientation in the wetting layer is driven by a
tilted or planar texture at the free nematic–isotropic interface. This in turn is associated
with particular values of the liquid-crystal elastic constants. Appropriate elastic constants
of the liquid crystal might thus be expected to yield a crossover between the well-known
logarithmic layer growth and the power law associated with director-distorted layers.

In this paper we make a closer analysis of the growth of these distorted wetting layers
using the Landau–de Gennes formalism of inhomogeneous liquid crystals. This formalism
has been used fruitfully in a number of recent papers to cast light on the systematics
of wetting and anchoring phenomena involving nematic liquid crystals [8, 9, 10]. More
specifically, in this paper, we shall use the model which has been closely analysed, albeit
in a different context, by Sen and Sullivan [9]. We shall distinguish between: distorted
nematic wetting layers (D); homeotropic layers which if extrapolated toTNI would diverge
in thickness, and which we thus denote as wetting homeotropic layers (H); and rather thin
surface regions of enhanced homeotropic nematic order aboveTNI , which are therefore
partially wetting homeotropic layers (P).

The plan of this paper is as follows. In section 2 we describe the Landau–de Gennes
model we use. In section 3 we briefly discuss the numerical method, and in section 4 the
results of the calculations are presented. We show typical dependences of the nematic layer
thickness and energy on temperature, and present relevant surface phase diagrams. Finally
in section 5 we present some brief conclusions.

2. The Landau–de Gennes model

In this section we first recall the crucial features of the Landau–de Gennes formalism used
by Sen and Sullivan [9]. We consider a semi-infinite system in which the substrate–liquid-
crystal wall is located atz = 0, with the domainz > 0 corresponding to a nematic liquid
crystal. There are two mathematically equivalent descriptions of the order parameter. We
may use the components of the Saupe ordering matrix; this is equivalent to considering
a laboratory-fixed frame of reference. Alternatively it may be more convenient to define
a director angle, a principal order parameter and a degree of biaxiality; this is equivalent
to considering a molecular frame of reference. The first is computationally simpler; the
second is more intuitively helpful and is consistent with the macroscopic formulation of
liquid-crystal theory.

We shall suppose the wall to be structureless and flat such that we may define an
orthonormal triadb, c, d, whered is the unit vector alongz normal to the plane of the
wall defined byb andc. We shall suppose that no twist effects occur in the liquid crystal.
In this case the vectorc may be supposed to remain everywhere a principal axis of the
nematic ordering tensor. There will now be three independent components to the ordering
tensor. The ordering tensor can be described using three parametersη(z), µ(z), ν(z) [11].
We may write

Qij (z) = ηs(z)

2
(3didj − δij ) +

√
3

2
µs(z)(bibj − cicj ) +

√
3

2
νs(z)(bidj + dibj ). (1)

The alternative description involves the director angleψ(z). The tensor may be written



Director distortion in a nematic wetting layer 2743

in terms of principal axesn(z), l(z) andm(z) = c:

Qij (z) = η(z)

2
(3ninj − δij ) +

√
3

2
µ(z)(li lj − mimj ) (2)

with

cosψ = n · d. (3)

Transformation between the two frames can be achieved using the formula

tan 2ψ(z) = 2νs(z)√
3ηs(z) − µs(z)

. (4)

In Landau–de Gennes theory, the thermodynamics and equilibrium structure of the
system are calculated by minimization with respect to the tensorQ(z) of a surface free-
energy functional

Fs [Q(z)] =
∫ ∞

0
dz

{
fl(Q(z)) + fel(Q

′(z)) + fsub(Q(z))
}

(5)

whereQ′ = dQ/dz.
The first term is the Landau–de Gennes expansion of the bulk free-energy density [12]

fl(Q) = A(T )QijQij − BQijQjkQki + CQijQijQklQkl (6)

whereA(T ) = a(T − T ∗) and the material constantsa, B, C andT ∗ may be determined
from experiment.

Contributions to the second termfel are from elastic deformations across the ordered
layer. In this study we focus on a form of the elastic energy which induces parallel
orientation of the director at the nematic–isotropic (NI) interface of the wetting layer. The
usual choice is that proposed by de Gennes [12], featuring two elastic constantsL1 andL2:

fel(Q
′) = 1

2
L1Q

′
ijQ

′
ij + 1

2
L2Q

′
izQ

′
iz. (7)

For positiveL2, the free nematic–isotropic interface favours parallel director orientation,
while negativeL2 favours homeotropic orientation. This form of the elastic contribution to
the free energy does not permit an oblique tilt at the free nematic–isotropic interface, which
can be imposed by including extra more complicated terms.

The final term in the functional is a substrate–liquid-crystal potential, for which we
choose, in line with the model with a single scalar order parameter given by Sheng [3],

fsub(Q) = −gδ(z)Qijdidj . (8)

For g positive, this may be interpreted as a short-range homeotropic anchoring potential. In
general there are also surface terms quadratic in the order parameter [2], but we shall not
need them in this study which concentrates on complete wetting by the nematic phase in a
homeotropic texture.

In order to simplify the calculations and make contact with previous studies, it is
convenient to use non-dimensional variables.

We define reduced temperature

t = 24A(T )C/B2 (9a)

with renormalized order parameters

η̃s = 6Cηs/B (9b)

µ̃s = 6Cµs/B (9c)
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and

ν̃s = 6Cνs/B (9d)

and a new length scale

z̃ = z/ξ (9e)

with

ξ2 = 24C

B2

[
L1 + 2

3
L2

]
. (9f)

The free-energy density is now redefined by

f̃l = B4ξ3

576C3
fl (9g)

and the surface anchoring parameter becomes

g̃ = 96C2

B3ξ
g. (9h)

We now drop the tildes, and obtain the following rescaled bulk free-energy density in
the molecular frame of reference, equation (2):

fl = t (η2 + µ2) − 2η(η2 − 3µ2) + (η2 + µ2)2. (10)

Biaxiality contributions to this are always positive, so biaxiality is suppressed in the limit
of bulk homogeneity and we have

fl = η2(η2 − 2η + t). (11)

The first-order bulk nematic–isotropic transition takes place at the reduced temperature
tNI = 1 with η = 0 andη = 1 defining the order parameter in the coexisting isotropic and
nematic phases.

In the following calculations we consider only the effect of positiveL2 in competition
with the homeotropic anchoring governed by positiveg of equation (8).

The expression forfel is now

fel = 1

2

(
dηs

dz

)2

+ L

2

(
dµs

dz

)2

+ M

2

(
dνs

dz

)2

(12)

with the definitions

L = 1

1 + 2κ/3
M = 1 + κ/2

1 + 2κ/3
(13)

whereκ = L2/L1.
This rescaling causes the properties of a uniform homeotropic layer in whichµs(z) =

νs(z) = 0 to be invariant with respect toκ.
The substrate–LC interaction becomes

fsub = −gηs(0). (14)
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3. Numerical method

We have minimized the free energy, equation (6), in the region just above the nematic–
isotropic transition att = 1, for various different values of the surface couplingg and the
elasticity ratioκ. In general the order parameter profile consists of a region of thicknessw

close to the interface with an enhanced order parameter∼1 (‘the nematic wetting layer’), a
region of rapidly changing order parameter at a distancew from the interface (‘the nematic–
isotropic interface’), and a region with a very low order parameter (‘the isotropic region’)
further still from the interface. For low coupling constantsg and well abovetNI = 1 the
first two features may be absent. When there is a wetting layer, it may be homeotropic or
it may show director distortion.

In finding numerical solutions to the director-distorted case, the D phase, it turns out to
be convenient to divide the minimization procedure into two levels.

On one level, the order parameter profile is discretized into a mesh of 3N variables with
respect to which the minimization is carried out, i.e.ηi

s = ηs(z
i), µi

s = µs(z
i), νi

s = νs(z
i);

i = 1, . . . , N ; zi = hi etc.

Figure 1. A schematic diagram of the initial profile,
showing ‘slow’ variablesw andψNI . The order profile
is initially a step function, shown as the solid line
in the lower part of the diagram. Smoothing yields
equilibrium structure (the dashed line). The upper part
of the diagram shows the corresponding director profiles
associated with D solutions.

Figure 2. Equilibrium structure at the interfaces after
full minimization with respect to the order parameter
profile; κ = 2, g = 0.2, t = 1.0002.

A conjugate gradient method [13] was used to minimize these 3N variables for given
layer thicknessw, and angle of tilt at the nematic–isotropic interfaceψNI . These latter two
quantities are ‘slow variables’; the energy is very weakly dependent on them. Compounded
by the assumption that the director tiltψ(z) varies more or less linearly with distance
from the interface, the two slow variables describe an initial profile from which the 3N -
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dimensional conjugate gradient minimization starts. The 3N -dimensional minimization,
however, primarily acts to smooth variables which are discontinuous in the initial profile.
The main effect is to alter the details of the order parameter profile at the incipient nematic–
isotropic interface and close to the wall. We therefore nest this smoothing procedure inside
a higher-level minimization with respect tow andψNI .

In figure 1, the solid lines show the initial-profile schematic diagram governed byw

and ψNI . We have used the same approach to calculate homeotropic (H) solutions (using
only a single slow variablew, of course).

The assumption of constant dψ/dz is seen to be a good approximation by expanding
equation (7) in the molecular frame of reference, i.e. with respect toψ andη. In the bulk of
the layer, where dη/dz ≈ 0, the leading-order contribution to the elastic free-energy density
is in (dψ/dz)2:

fel ≈ 9(2 + κ)

4(3 + 2κ)

(
dψ
dz

)2

. (15)

When integrated over the layer width, this contribution is minimized by the condition
dψ/dz = constant.

The smoothing process described yields relaxedη(z)-structure at the respective
interfaces, which we show schematically in figure 1 by the dashed line. There is also
relaxation inψ(z), but again the main effects are at the interfaces. This means that in
practice we need only smooth over the interfacial regions, rather than over the complete set
of 3N variables describing the system.

Figure 2 shows an example of the structure of the order parameter profile structure at
the two interfaces of a fully minimized D solution. The director profile at both interfaces
has relaxed away from the condition dψ/dz = constant implemented in the initial-profile
schematic diagram (figure 1). This relaxation is considerably weaker at the NI interface
than at the substrate. Biaxial structure is in evidence at the NI interface, but not at the
substrate. There is enhanced uniaxial order at the substrate, but this is not shown.

An important point concerns the conditionψ(0) = 0 which we have prescribed in the
initial profile. The homeotropic texture is favoured from the conditiong > 0. However,
the onset of director distortion is expected to destroy this symmetry. While one certainly
expectsψ(0) to be non-zero after proper minimization, the question arises as to whether
the homeotropic anchoring is sufficiently strong thatψ(0) is negligible and the numerical
method that we have outlined remains well founded. This is important because although
the numerical method can be relied upon to relax by small amounts, it cannot converge to
a solution which is significantly removed from the initial profile.

An instructive way to address the issue is to consider the anchoring energiesW sub
s

and WNI
s associated with the respective interfaces. IfWNI

s /W sub
s � 1, then the stronger

anchoring at the substrate dominates andψ(0) ∼ 0. Within the model, we have more or less
independent control of these anchoring strengths via the parametersg andκ. By increasing
κ we increaseWNI

s , whereas by increasingg we increaseW sub
s . Thus the above ratio is

maximized in the limitg → 0 andκ → ∞.
With these considerations in mind, we have roughly estimated the range of validity of

the assumptionψ ∼ 0 by performing calculations which implementψ0 ∼ ψ(0) as a third
slow variable. This is shown in figure 3(a). For fixedκ = 20, g = 0.2, the director tilt
at the respective interfaces is plotted against widthw. The width in this plot is controlled
by varying temperature. As one expects intuitively, asw increases and the interfaces move
apart, both tilts relax towards their preferred orientations. A rough estimate of the lower
limit above which we can reasonably assumeψ(0) ∼ 0 might be, for this example,w ≈ 30ξ .
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Figure 3. (a) The width dependence of the director tilts
at the substrate (ψ(0)) and theNI interface (ψNI ); κ =
20,g = 0.2. (b) The same data replotted to demonstrate
the near-linear behaviour sin(2ψ(0)) ∼ 1/w.

Figure 4. Representative plots showing the first-order
jumps (dotted lines) in layer thickness as the director
profile reconfigures. The director-distorted profiles
(solid lines) are stable at lower temperatures, exhibiting
the −0.5 scaling exponent in the limitt → 1. The
homeotropic layer (dashed line) exhibits logarithmic
behaviour. The width scale may alternatively be
viewed as a negative surface entropy scale.g = 1.5
(i.e. pertaining to complete wetting).

In the results presented in the next section, we find that the D phase is no longer stable
at this width. In fact this choice ofg andκ reflects as high a ratioWNI

s /W sub
s as one can

hope to achieve without straying beyond the extremes of D-phase stability (regardless of
width and temperature). This allows us to assumeψ(0) ∼ 0 over the entire parameter space.
From a numerical perspective we conclude that there is no need for a third slow variable
ψ0.

A useful check on our numerical approach in general can be achieved from a comparison
with the analytical result which follows from assuming uniformη(z) = 1 over the layer
width 0 < z < w. Equation (14) may then be written as

fsub = −gP2(cosψ(0)) (16)

whereP2 denotes the second Legendre polynomial.
Substituting this, along with equation (15), into the functional given as equation (5), we

obtain by variational minimization the Euler–Lagrange condition at the substrate surface:

dfsub

dψ(0)
= 9(2 + κ)

2(3 + 2κ)

dψ
dz

. (17)
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For largeκ, this leads to the relation

sin(2ψ(0)) ≈ 3

2g
(ψNI − ψ(0))

1

w
. (18)

Figure 3(b) shows sin(2ψ0) versus 1/w for the data of figure 3(a), i.e.g = 0.2, κ = 20.
Substitution ofg = 0.2 andψNI − ψ(0) ≈ π/2 into equation (18) gives sin(2ψ0) ≈ 10/w.
This is consistent with the gradient of the graph. The figure also exhibits a slow decrease
in the gradient reflecting the decrease inψNI − ψ0.

4. Results

We recall the different types of solution forQ(z) = [η(z), µ(z), ν(z)]. In the P and H
surface phases the director is uniformly homeotropically oriented throughout the layer. In
the D surface phaseψ(0) ∼ 0 at the substrate, withψ(z) roughly monotonically increasing
at constant gradient dψ/dz = constant up to an angleψNI at the NI interface.

In figure 4 we show plots of the thicknessw(t), for a fixed value ofg = 1.5 and for
three different values ofκ. This value ofg is sufficiently large that the homeotropic layer
thickness diverges; the nematic phase wets the wall. In order to present the results in the
most effective way, the temperature scale is plotted on a logarithmic scale in(t − 1). The
dashed line that is the lowest curve represents the growth of a homeotropic layer. In the
lowest of the three graphs the layer thickness scale is presented linearly. This dashed curve
is linear, indicating thatw ∼ ln(t − 1). The homeotropic layer (which from the scaling is
invariant with respect to change inκ), is diverging att = 1.

Thus, well above the nematic–isotropic phase transition, the H phase is stable. However,
as the temperature is reduced, the new D phase replaces it. This occurs at higher
temperatures ifκ is increased. This is shown in the middle graph in figure 4. In this graph
the thicknessw is also presented on a logarithmic scale. These graphs now also show a
linear behaviour ast → 1, with a gradient of−0.5. This indicates thatw ∼ (t − 1)−1/2,
diverging with a power law as predicted [4, 5].

However, the transition between the two phases is not continuous, but rather has a strong
first-order character. For example, forκ = 2 the transition occurs att = 1.000 36 between
w ∼ 6ξ in the H phase tow ∼ 74ξ in the D phase. We have also plotted the tilt angle at
the nematic–isotropic interfaceψNI , in the distorted layer. As the coexistence limitt = 1
is approached the layer thicknessw becomes very thick, the nematic–isotropic interface
and the nematic–wall interfaces are far apart, andψNI relaxes towardsπ/2. We see that
this tilt does decrease slightly with temperature down toψNI ≈ 0.39 at the HD transition,
indicating a balance between the anchoring energy at the nematic–isotropic interface and
the elastic energy in the distorted wetting layer. However, it never reduces to zero, as it
would in a continuous transition.

We show in figure 5 the surface free energyFs associated with one of the nematic layers
(κ = 2) shown in figure 4. This quantity plunges dramatically in the neighbourhood oftNI ,
as the nascent nematic–isotropic interface in the thickening wetting layer is now increasingly
able to exhibit its preferred orientation. As we show in this figure, the degree of reduction
of Fs is almost exactly the difference between the nematic–isotropic surface free energies at
homeotropic and planar anchoring—the anchoring energy at the nematic–isotropic interface.
This is not surprising; in the limitt → 1 the major change in the contribution to the surface
free energy comes from the nematic–isotropic surface at the edge of the nematic wetting
layer. We also observe that the gradient dFs/dt diverges ast = 1 is approached. This
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Figure 5. The surface free energy in the complete wetting régime astNI is approached, showing
the first-order H–D (solid line–dashed line) transition;κ = 2, g = 1.5.

Figure 6. The prewetting phase diagram showing the modification of the Sheng prewetting line
by the effects of director distortion. The unmodified prewetting line is shown in the inset for
comparison. With respect to the surface critical point, the D surface phase is stable only at
temperatures very close totNI . Hence the main diagram is plotted on a significantly smaller
scale. The dotted line depicts the part of the prewetting line which disappears to be replaced by
a PD prewetting line (curved dashed line). Both the old and the new prewetting lines have zero
gradient in the limit oftNI . A surface triple point features in the modified diagram, off which
extends a horizontal line of HD layer transitions.κ = 2.

divergence also goes as(t − 1)−1/2; phenomenological analyses of wetting layers [4, 5]
predict that dFs/dt andw should diverge with the same power law.

We can draw together the general picture of the behaviour of wetting films as a
function of temperaturet and surface ordering parameterg by plotting a wetting phase
diagram, showing the regions in which the P, H, and D surface phases are stable. A
useful reference point on which to base our discussion is the wetting phase diagram
described by Sheng [3, 14]. This model restricts discussion to P and H surface phases.
The nematic wetting transition, at which the H phase pre-empts the P phase at nematic–
isotropic coexistence, occurs atg = gW

H ≈ 0.24. The prewetting line, which Sheng called
the boundary phase transition, is a first-order surface phase transition separating the P and
H regions. It extends from the wetting transition atg = gW

H , t = tNI to a surface critical
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point atg = 0.5, t = 1.17.
However, forκ > 0 a D surface phase is in principle permitted. We show in figure 6

the resulting altered surface phase diagram forκ = 2, with the features of the original
Sheng wetting phase diagram also marked. The principal new features of the modified phase
diagram are: (a) for all values ofg in which the H phase wets the interface in the original
Sheng picture, the H phase is pre-empted by a wetting D phase att = tHD ≈ 1.000 36;
(b) because the nematic–isotropic surface tension is lower for a planar orientation, the
wetting transition occurs at a lower value ofg = gW

D ≈ 0.18; (c) there is a modified
prewetting line extending from the modified wetting transition which divides the partial
wetting P films from the wetting D layer, along a linet = tPD(g); (d) this modified
prewetting line meets the original Sheng prewetting line and the HD line at a surface triple
point atg = gtr ≈ 0.24, t = ttr = tHD ≈ 1.000 36; (e) abovettr the Sheng prewetting line
continues up to the original surface critical point.

The modified surface phase diagram is thus seen to be considerably richer than the
original Sheng surface phase diagram. In what follows we discuss some of the features of
this phase diagram in more detail.

4.1. Features of the modified surface phase diagram

Two noteworthy features of figure 6 are: (a)tHD is extremely insensitive tog over the
complete wetting region of the surface phase diagram; and (b) by contrast, in the partial
wetting regime,tPD(g) exhibits a rather weaker dependence ong than the original Sheng
prewetting linetPH (g). In what follows we carry out a more careful analysis of the expected
dependence of these surface phase boundaries.

This analysis can be carried out by developing a Clausius–Clapeyron-type equation
governing the surface phase boundaries. The condition for coexistence dFA

s = dFB
s between

two surface phases A and B in thet–g plane, combined with equation (8), yields

dt

dg
= ∂FB

s /∂g − ∂FA
s /∂g

∂FA
s /∂t − ∂FB

s /∂t
= ηA(0) − ηB(0)

SB
s − SA

s

= − 1η

1Ss

(19)

whereηA(0), ηB(0) are the order parameters atz = 0, SA
s , SB

s are the respective surface
excess entropies corresponding in the model to

Ss = −∂Fs

∂t
= −

∫ ∞

0
dz {Qij (z)Qij (z)} = −

∫ ∞

0
dz {η2

s (z) + µ2
s (z) + ν2

s (z)} (20)

and1η indicates changes in quantities across the surface phase boundary.
For wetting layers, the quantitySs is approximately:

Ss ≈ −
∫ ∞

0
η2(z) dz ≈ −w. (21)

Thus the magnitude of the surface entropySs is approximately the thickness of the nematic
layer at the interface.

We can now use the result of equation (21) to elucidate the features of figure 6. We
first discuss the flatness of the linetHD. In this case both the H and D phases are wetting
phases, andη(0) ≈ 1 in both cases; we expect that1η < 0.1. However, the transition is
between phases with very different values ofw; we have found numerically that1w ∼ 70
for realistic values ofκ. We thus find that

dt

dg
= 1η

1w
∼ 1.4 × 10−3 � 1. (22)
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We now examinetPD(g). In the partial wetting regime, by contrast to the wetting
régime, we haveη(0) ∼ 0, andw ∼ 1. Thus, now

dt

dg
∼ 1

wD

. (23)

At the surface triple pointwD ∼ 70, and we see that the dependence ong is very much
stronger than at the distortion transition from the H wetting phase. However, as the wetting
transition point is approachedw diverges, leading to the expected relationtPD ∼ (g−gW

D )2,
with zero gradient as the wetting transition is approached.

We can also estimate the shift1gW = gW
H −gW

D of the wetting transition following from
considering the possibility of the D surface phase. The wetting transition occurs as a result
of balancing the increase in surface free energy resulting from adding a nematic–isotropic
interface with the decrease as a result of having a high surface order parameter.

If we roughly suppose that these are the only two contributions, and thatη(0) ∼ 1 in
the wetting phases andη(0) ∼ 0 in the non-wetting phases, we obtain for the surface free
energy alongt = 1

Fs(P ) ≈ 0 (24a)

Fs(H) ≈ σNI (0) − g (24b)

Fs(D) ≈ σNI (π/2) − g (24c)

whereσNI (θ) denotes the surface free energy at the nematic–isotropic interface with the
surface tilt angle at angleθ .

Comparing these equations we obtain

1gW ∼ σNI (0) − σNI (π/2) = WNI
s (25)

whereWNI
s is the anchoring energy at the nematic–isotropic interface.

The shift1gW is κ-dependent viaWNI
s ∼ κ. In the next section we examine the role

of κ more quantitatively.

Figure 7. A projection of the prewetting phase diagram in theκ–t plane, with the surface field
g fixed in the complete wetting regime. Both H and D are complete wetting phases, but H
wetting is superseded by D wetting for all positiveκ. The physically relevant range ofκ is
thought to be 2–4, where the coexistence line is approximately linear. In the high-κ limit, the
coexistence temperaturetHD tends towards a maximum just belowt = 1.002 (dotted line).
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Figure 8. Latent heat along the coexistence line of the previous figure. Again, an asymptotic
limit exists at highκ (dotted line). In the low-κ limit, the latent heat diverges.

4.2. The elastic constant–temperature plane

In figure 7 we show the projection of the wetting phase diagram in theκ–t plane. As long
as the surface fieldg is sufficiently high to ensure complete wetting by the nematic phase,
this is insensitive tog. For all positiveκ, we see that complete wetting by H is superseded
by complete wetting by D.

The HD surface phase boundary tends to an asymptotic limitt ≈ 1.002 asκ → ∞,
shown by the dotted line. The fact that such an asymptotic limit exists may be explained
in the following way. The quantitiesL andM defined in equation (13) approach constant
values of 1 and 3/4 respectively in the limitκ → ∞. Then, using equation (12), the system
becomes independent ofκ:

lim
κ→∞ fel = 1

2

(
dηs

dz

)2

+ 3

8

(
dνs

dz

)2

. (26)

This upper bound on the HD surface phase transition temperature is well below the
surface critical point at which the Sheng prewetting line (PH) terminates. Our model
therefore exhibits the PHD triple point for allκ > 0.

We have also plotted, in figure 8, the latent heatLHD along the HD surface phase
boundary. Again, asκ → ∞, the asymptotic limit offel imposes a lower bound on the
latent heat of≈28 (dimensionless units). The quantityLHD diverges asκ → 0.

Let us briefly review the reason for the divergence ofLHD. From equation (21), the
latent heat may be regarded as essentially the jump1w in nematic layer width at the phase
transition. This jump exhibits the 0.5 power-law divergence in thet = 1 limit, because the
D layer power-law behaviour dominates the logarithmic divergence of the H layer. The HD
transition occurs as a balance of nematic–isotropic interface anchoring energyWNI

s , which
favours the D surface phase, against director curvature energy, which favours the H phase.
The HD transition will thus occur whenWNI

s ∼ w−1
D . Hence

LHD ∼ wD ∼ (WNI
s )−1 ∼ κ−1. (27)

4.3. An order-of-magnitude estimate

It remains to convert our findings into an estimate of real liquid-crystal properties. We
substitute the following values obtained experimentally for MBBA [16] for the Landau–de
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Gennes coefficients appearing in equation (6):a = 0.030 J cm−3, B = −0.263 J cm−3,
C = 0.136 J cm−3 and T ∗ = 318.3 K. The physically relevant range ofκ is thought to
be 2–4 [9], over which the coexistence line of figure 7 is approximately linear. Thus, we
obtain for the HD transition temperature

THD ≈ TNI + B2κ

24aC

dtHD

dκ
≈ (318.3 + 1.6κ × 10−4) K. (28)

We note, however, that MBBA is not an entirely appropriate choice sinceoblique
anchoring at the free nematic isotropic interface has been observed [15] in addition to the
planar anchoring that we require for consistency with the present theory. Nevertheless, this
serves as an order-of-magnitude estimate of the size of the phenomenon.

5. Conclusion

We have solved a Landau–de Gennes theory model for a liquid-crystal-forming material
close to an interface, for temperatures just abovetNI . We have concentrated on a régime
for which the surface favours homeotropic anchoring, but the nematic–isotropic boundary
favours planar anchoring. We then examined, in particular, solutions for which there is a
nematic layer close to the interface which diverges as the clearing point is approached.

Our primary concern has been to test, in a more systematic way, predictions made using
an interface Hamiltonian approach. These calculations indicated that a growing homeotropic
layer would be superseded, very close totNI , by a distorted layer which is homeotropic at
the surface, but planar or nearly so at the edge of the wetting nematic film. The two layers
would have different divergence characteristics close to the bulk transition.

We have indeed found two types of solution corresponding to two qualitatively
contrasting forms of the director profile, which correspond closely to the expected order
parameter profiles, and which have the predicted power-law behaviour. We also find a
solution corresponding to no growth of a nematic wetting layer: so-called partial nematic
wetting. Our numerical method of solution depends sensitively on having a sensible trial
order parameter profile. There may, of course, be other solutions to the Euler–Lagrange
equations of the theory, although we have found what seem to us to be the sensible physical
solutions.

The predicted transition from a homeotropic to a distorted profile has been confirmed.
The order of the transition seems to be universally first order, although on symmetry grounds
a second-order transition seemed possible. We estimate that the first-order transition that
we have studied lies typically within O(10−4 K) of the bulk nematic–isotropic temperature,
making it extremely difficult to identify experimentally.

One possible circumstance in which such a transition might occur is at a free interface.
In this case, the signature of the transition would not so much be a jump in layer thickness
very close to the bulk transition, as an observed discontinuity in the surface tension at the
phase transition which consists of two parts: one the true discontinuity and the other the
rapid increase betweentNI and tHD. It might in practice be impossible to resolve these
two features. However, the observed discontinuity would beσNI (0) = σNI + WNI

s , and
would belarger than the true equilibrium nematic–isotropic surface tension, thus apparently
violating the Young–Laplace law, and giving an apparent contact angleθs with cosθs > 1.

In addition to assessing and quantifying phenomenological arguments predicting the
scaling behaviour of layer width and surface tension associated with the director-distorted
wetting phase, we have also found that it has an interesting effect on the prewetting diagram
of the Sheng model. Three wetting phases feature in the modified diagram, defining a
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wetting triple point which consists of akink in the prewetting line, off which extends a line
of layer transitions. This latter feature (which is not a prewetting line in the strict sense)
does not terminate in the limit of high surface field.

The origin of the kink may be appreciated from the fact that there is a shift in the value
of the surface field at which the wetting transition takes place. This shift is governed by
the approximate relation1gW ≈ σNI (0) − σNI (π/2) and is brought about by the lowering
of the tension of the nematic–isotropic interface when the director is allowed to relax to a
parallel orientation.

The effects discussed in this paper depend on the existence of competition between the
effect of an imposed surface and that of the spontaneous nematic–isotropic surface. We
have discussed this antagonism in the case whenκ > 0 andg > 0. We expect somewhat
more complex effects, however, in the régime whereκ < 0 andg < 0, for which promising
results already exist [17].
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